Notes

Synthesis **of** Alkyl **(25,3R)-4-Hydroxy-2,3-epoxybutyrates from Sodium** Erythorbate

James Dunigan and Leland 0. Weigel*

Chemical Process Research and Development, Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285

Received March 26,1991

As a segment of a program directed toward the commercial development of the **1-(dethia)-1-carbacephem an**tibiotics,' we have recently disclosed the transformation of ethyl **(2S,3R)-4-hydroxy-2,3-epoxybutyrate (1)** into the monocyclic β -lactam 2^2 and thence into Lorabid $(3,$ the C-5 analogue of Ceclor, **4).** This epoxide3 provided four of the seven nuclear carbons of **3** (C-1 to C-4 of **1** translate into C-3 to C-6 of **3).** Additionally, **1** tactically imparted the required absolute stereochemistry, the desired cis configuration of the β -lactam⁴ and the correct oxidation state for a subsequent Dieckmann closure6 to **an** enol precursor of 3.

(1) (a) First enantioeelective synthesis of a carbacephem nucleus: Evans, D. A.; Sjogren, E. B. *Tetrahedron Lett.* **1985,26,3787.** (b) First disclawe of the synthesis of **3:** Hirata, T.; Matsukuma, I.; Mochida, K.; Sato, K. 27th Interscience Conference on Antimicrobial Agents and
Chemotherapy, New York, October 4–7, 1987. (c) Recent synthesis of 3:
Bodurow, C. C.; Boyer, B. D.; Brennan, J.; Bunnell, C. A.; Burks, J. E.;
Carr, M. A.; Graves, B. J.; Hines, P.; Hoying, R. C.; Jackson, B. G.; Kinnick, M. D.; Kochert, C. D.; **Lewis,** J. **S.;** Luke, W. D.; Moore, L. L.; Morin, J. M. Jr.; Nist, R. L.; Prather, D. E.; Sparks, D. L.; Vladuchick, W. C. *Tetrahedron Lett.* **1989,30, 2321.**

(2) (a) Weigel, L. *0.;* Aetleford, B. Presented at the **200th** National Meeting of the American Chemical Society, Washington, DC, August 26,
1990; ORGN 51. (b) Aikins, J.; Blanchard, W.; Doecke, C.; Dunigan, J.;
Frazier, J.; Gardner, J.; Heath, P.; Jackson, B.; Kennedy, J.; Moore, L.;
Pedersen Presented at the **201st** National Meeting of the American Chemical **So**ciety, Atlanta, GA, April **15,1991;** ORGN **107.**

However, the application of this strategy to large-scale production of carbacephems was hampered by lack of a convenient source of the epoxide **1.** Our first synthesis of l2 was based upon the Sharpless asymmetric epoxidation $(AE)^5$ of ethyl 4-hydroxycrotonate $(5)^6$ under noncatalytic conditions (three steps from fumaric acid). Epoxide **1** was **also** obtained2 by employing **known** methods via conversion of diethyl (S) -malate⁷ (6) or diethyl $(-)$ -tartrate⁸ (7) into the epoxide 8 followed by selective sodium borohydride reduction.^{2b,3a}

These routes were adequate for the preparation of hundred-gram quantities but costly for scale-up since they relied upon a number of detailed processing steps or used relatively expensive esters of $(-)$ -tartaric acid (6) or (S) malic acid **(7).**

We wish to report an efficient and straightforward synthesis of **1** (and related esters) from the common food preservative sodium erythorbate **(9,** the sodium salt of Disoascorbic acid, Scheme I). **Our** strategy was stimulated by the long-known availability D-erythronolactone $(10)^9$ from various natural sources (including 9). We rationalized that one route to the required epoxide would involve selective conversion of the C-3 hydroxyl into an appropriate leaving group (retention of configuration) followed by a sequence of reversible lactone ethanolysis and irreversible, kinetically controlled closure to epoxide **1** (Scheme I). Thus, oxidation of sodium erythorbate **9** with alkaline aqueous hydrogen peroxide according to the process of Cohen^{10a,b} affords, after the modified isolation,^{10c} 10

^{(3) (}a) In the course of this work the reduction of *ent-8* into *ent-1* was reported in an enantioselective synthesis of Carumonam: Manchand, P. S.; Luk, K. C.; Beliica, P. S.; Choudhry, S. C.; Wei, C. C.; Soukup, M. J. Org. Chem. 1988, 53, 5507. (b) Specific applications of glycidic acids derivable from 1: Sharpless, K. B.; Chong, J. M. Tetrahedron Lett. 1985, **26,4683.**

⁽⁴⁾ Evans, **D.** A.; Williams, M. J. *Tetrahedron Lett.* **1988, 29, 5065. (5) (a)** Hatanaka, M.; Ishimam, **T.** *Tetrahedron Lett.* **1983,24,4837.** (b) Jackson, B. G.; Gardner, J. P.; Heath, P. R. *Tetrahedron Lett.* **1990, 31,6317.**

⁽⁶⁾ Compound **1** is obtained from **5** *(Organic Syntheses;* Kende, A. *S.,* Ed.; John Wiley & Sons; New York, **1986,** Vol. **64,** p **104)** in 85% chromatographed yield (90% ee) utilizing (-)-diisopropyl tartrate (1.2 equiv) with titanium isopropoxide (1 equiv) and tert-butyl hydroperoxide (2.5 equiv) in the presence of powdered molecular **3-K** molecular sieves in methylene chloride **(0.2** M, **-25** 'C, **72** h) with a workup involving **satu**rated eodium sulfate according to Sharpless, K. B.; Hanson, R. M. J. *Org. Chem.* **1986, 51, 1922.** Recrystallization from ether/pentane **(-25** "C) provides enantiomerically pure epoxide with identical properties to **1** reportad in the Experimental Section.

⁽⁷⁾ Seebach, **D.;** Wasmuth, D. *Helu. Chim.* Acta **1980,197,5.**

⁽⁸⁾ Mori, **K.;** Iwasawa, H. *Tetrahedron* **1980,36,87.**

⁽⁹⁾ (a) Weidenhagen, R.; Wegner, **H.** *Chem.* Ber. **1939, 72,2010.** (b) Whistler, R. L.; Linke, E. G.; Kazeniac, *S.* J. *J. Am. Chem.* SOC. **lSW,78, 4704.** (c) D-Erythronolactone is commercially available from Fluka Chemical Corporation.

Table I. **(25,3R)-4-Hydroxyl-2,3-epoxybutyrates** from

 $(87-94\% \text{ yield})$. Selective tosylation¹¹ of 10 at the C-3 OH with 1.06 equiv of p-toluenesulfonyl chloride (p-TsC1) in pyridine provided tosylate 11 (82-86%). In all systems examined, the primary impurity was lactone **12.** Empirically the corresponding ditusylate of **11** was never isolated. At low conversions the ratio of **11:12** appeared to be **>955,** reflecting the possibility that **12** arose from slow tosylation of the C-4 OH of **11** followed by rapid, base-catalyzed elimination of the C-4 tosyloxy group. Treatment of **11** with excess of p-TsC1 resulted in the formation of **12,** which was consistent with the above pathway. Formation of byproduct **12** was in 10-15% yield under homogeneous reaction conditions but was minimized to *<5%* by utilization of conditions that allowed direct crystallization of **11** from the reaction medium (see Experimental Section).

In accordance with our expectations, ethanolysis of **11** with catalytic amounts of sodium ethoxide in ethanol^{12a} provided the unstable hydroxy ester **13.** This intermediate partially relactonized upon attempted isolation. However, direct addition of 1 equiv of sodium ethoxide provided **¹** as a stable, crystalline solid after a nonaqueous workup. Use of more than 1 equiv of ethoxide, relatively concentrated solutions, or prolonged reaction periods led to substantial amounts of dimer **1412b** (characterized as the benzoate **15).** A series of related epoxy esters were prepared in good to excellent yield by reaction of 11 with

appropriate alkoxides (Table I). Limitations of the rearrangement of **11** into the corresponding epoxide are apparently defined by the pK_a of the reacting alcohol (approximately 16-18), as alcohols of lower pK_a^{12a} fail to open the lactone and to close the hydroxy ester at a reasonable rate compared to that of the epoxide. 12

Methodology presented herein has provided **an** effective approach to the synthesis of a variety of alkyl (2S,3R)-4 **hydroxy-2,3-epoxybutyrates,** which are useful starting materials for the synthesis of carbacephems.

Experimental Section¹⁵

 $Dihydro-3(R), 4(R)$ -dihydroxy-2 $(3H)$ -furanone (10) . According to the procedure of Cohen,^{10a} D-isoascorbic acid (704 g) in water **(10** L, **4** "C) was sequentially treated with sodium carbonate **(848** g over **30** min; conversion to **9),** hydrogen peroxide (CAUTION,lob **30%,** *880* mL over **1 h;** exotherm from **5** *to* **35** OC; warmed *to* **40** "C for **30** min), and Darco **G-60 (160** g in portions, 0-4 °C, then 25 °C). After observing a negative peroxide test, the mixture was filtered through Celite (2-L boiling water wash), treated with **6** N hydrochloric acid **(2.1** L, pH **1.5),** and concentrated to dryness under vacuum **(45-50** "C). The solid was extracted with boiling ethyl acetate $(5 \times 3 \text{ L} \text{ portions})$. These combined extracts were concentrated in vacuo, treated with diethyl ether^{10c} (2 L), filtered, affording D-erythronolactone^{10d} (436g, 94%), which was suitable for further use: mp **101-103** "C (lit.l'. 97.5-99 °C; lit.^{9a} mp 104-105 °C); [α]²⁶_D-73° (c 1.00, H₂O) (lit.^{9a} $[\alpha]^{25}$ _D -73.2° (c 0.533, H₂O)).

Dihydro-J(R)-[[**(4-methylphenyl)sulfonyl]oxy]-4(R)** hydroxy-2(3H)-furanone **(11).** Diol **10** (50.0 g, **0.42** mol) was treated with p-TsC1(85.5g, **0.445** mol) in pyridine **(210** mL, **-26** "C, **28** h) after which **11** was filtered from the reaction and the filtrate returned to the cooling bath **(-26** "C, **48** h). Isolated **11** from above was carefully washed with water **(300** mL) and dried (80.8 g). The first-crop filtrate was concentrated **(<25** "C, *5* mm) *to* **90 mL,** diluted with water **(1.5** L, 0 "C), and filtered. This dried material **(26.1** g) was recrystallized from ethyl acetate **(260** mL), affording additional **11 (14.6** g; combined yield **84%):** mp **181-184**

^{(10) (}a) Cohen, N.; Banner, B. L.; Lopresti, R. J.; Wong, F.; Rosen-berger, M.; Liu, **Y. Y.;** mom, E.; Liebman, A. A. J. Am. Chem. *SOC.* 1983, *lob,* 3661. (b) Thie procedure is a minor variation of the full account by N. Cohen, B. L. Banner, A. J. Laurenzano, and L. Carozza; CAUTION statements should be observed. *See:* Organic *Syntheses;* Saucy, *G.,* Ed.; John Wiley & Sons: 1985; Vol. 63, p 127. (c) We acknowledge Mr. Jeff Ward for this process modification.

⁽¹¹⁾ After submission of this paper, an account noting similar observations with acyclic threo-2,3-dihydroxy esters appeared: Fleming, P. R.;
Sharpless, K. B. J. Org. Chem. 1991, 56, 2869 and references therein.
(12) (a) Unpublished work with Mr. Jeff Ward suggests that tri-

fluoroethanol, trichloroethanol, phenol, and thiophenol failed to provide the expected epoxide under the conditions described herein. (b) We especially thank Mr. Ward for preparing 1 containing these impurities. (c) The use of ethanol denatured with methanol must be avoided because of facile transesterification of 1.

⁽¹³⁾ The enantiomeric excess *can* be determined on 1-naphthyl car **bamate** derivatives (obtained by reaction of the epoxides with 1-naphthyl isocyanate catalyzed by dibutyltin diacetate) by HPLC analysis on a 25-cm Chiralcel OD column with 40% hexane in isopropyl alcohol **as** eluent at 290 nm, 25 "C with a flow rata of **1** mL/min. Weigel, L. *0.;* Kennedy, J. H. Chirality. Submitted for publication.

⁽¹⁴⁾ For large-scale preparations, sodium erythorbate *can* be converted

⁽¹⁵⁾ Unless noted otherwise physical data were gathered under the following conditions: $^{1}H/^{13}C$ NMR QE300 at 300/75.5 MHz, respectively (only characteristic proton data) (J values are in hertz); melting points (uncorrected), Thomas Hoover Uni-melt; HPLC, Hatachi L6200 with L4000 Detector and D2500 Chromato-Integrator at 230 nm on a Zorbax RX column at 1.0 mL/min with methanol/triethylamine/water/ammo-
RX column at 1.0 mL/min with methanol/triethylamine/water/ammo-
nium acetate (40:40:1:1, v/ Nicolet 510P; optical rotations, Perkin Elmer 241 (10 mg/mL); FD mass
spectra, Varian Matt 731; TLC, silica gel 60 F₂₅₄ (0.25 mm) using ethyl
acetate-hexane-methanol (5:5:1) with a Shimadzu CS-930 Scanner (255 or 520 nm with development using phosphomolybdic acid); elemental analysis, CEC 440; reaction solvents employed were dry (<0.05% water by KF titration). Sodium alkoxide solutions were prepared in a safe manner (-78 °C to 25 °C under nitrogen) from the alcohol, using 60% sodium hydride (CAUTION) and were titrated before use.

°C; R_1 , 0.36; α ²⁵_n -13.2° (c 1.00, pyridine); IR (KBr) 1782, 1773; MS, 272 (M⁺); ¹H NMR (DMSO- d_0) 7.79 (2 H, d, J = 9), 7.50 (2) H, d, $J = 9$), 5.96 (1 H, br, D₂O exchanges), 5.51 (1 H, d, $J = 4.5$), 4.39 (1 H, dd, $J = 2.5$, 8), 4.31 (1 H, dd, $J = 2.5$, 4.5), 4.13 (1 H, d, $J = 8$), 2.43 (3 H, s); ¹³C (DMSO-d_e) 170.3, 145.3, 132,5, 130.0, 127.8, 75.1, 72.9, 67.1, 21.0. Anal. Calcd for C₁₁H₁₂O₆S: C, 48.52; H, 4.44; S, 11.78. Found: C, 48.74; H, 4.51; S, 12.00.

Chromatography of the mother liquors from 11 on silica gel (ethyl acetate-hexane) and recrystallization from ethyl acetate afforded 12: mp 119-122 °C; R_t 0.46; IR 1781; MS 255 (M⁺ + 1); ¹H NMR 7.82 (2 H, d, $J = 7$), 7.39 (2 H, d, $J = 7$), 7.24 (1 H, dd), 4,86 (2 H, dd), 2.43 (3 H, s); ¹³C NMR 165.9, 146.6, 137.3, 132.0, 130.18, 128.6, 67.5, 21.8. Anal. Calcd for C₁₁H₁₀O₅S; C, 51.96; H, 3.96; S, 12.61. Found: C, 52.04; H, 3.93, S, 12.38.

Ethyl 4-Hydroxy-2(S),3(R)-epoxybutyrate (1). As a slurry, tosylate 11 (25.0g) in absolute ethanol^{12c} and tetrahydrofuran (430) mL/75 mL, respectively) was treated with sodium ethoxide (12.2 mL of 0.82 N in ethanol, 0 °C, over 2 h) after which the solution became homogeneous and TLC indicated the presence of 13 (R_t) 0.21). Additional ethoxide solution (101 mL over 30 min, -30 °C) was added. After 2 h the reaction was quenched with acetic acid $(0.7 \text{ mL}, \text{pH} = 7)$. All volatiles were evaporated (<25 °C, 5 mm) and the solids treated with ethyl acetate-hexane (2:1, 200 mL). Gravity filtration of one-half of this mixture thru silica (100 g, 230-400 mesh) using hexane and then ethyl acetate-hexane as eluent afforded chromatographically pure 1 (6.43 g, 95%). Alternatively, the remaining half was filtered, volatiles were removed under vacuum, and the material was recrystallized from etherhexane, affording pure 1 (6.16 g, 91%): R_f 0.35; mp 47-49 °C (lit.^{3a} mp ent-1, 45-46 °C); $[\alpha]^{25}$ _D +33.1° (c 1.00, ethanol) (lit.^{3a} ent-1, $[\alpha]^{20}$ _D-33.8° (c 1.00, ethanol)); IR 1743, 1210; MS, 147 (M⁺ +1); HPLC analysis¹³ >99% ee; ¹H NMR (CDCl₃-D₂O) 4.24 (2 H, m), 3.96 (1 H, dd, $J = 2$, 12), 3.73 (1 H, dd, $J = 4$, 12), 3.54 (1 H, d, $J = 1$, 3.38 (1 H, ddd, $J = 1$, 2, 4); ¹³C NMR 14.1, 50.3, 58.0, 60.2, 61.8, 169.08. Anal. Calcd for $C_6H_{10}O_4$: C, 49.31; H, 6.90. Found: C, 49.23; H, 6.85.

If an excess of ethoxide was employed compound 14 was isolated (>5%) by silica gel chromatography $(R_t 0.30)$ and was characterized by benzoylation (1 equiv of benzoyl chloride in dry methylene chloride with 1.2 equiv of pyridine), affording 15: mp 99–102 °C; R_f 0.87; [α]²⁵_D +63° (c 1.00, MeOH); IR 1748, 1726; MS 350 (M⁺); ¹H NMR 3.58 (1 H, d, $J = 1.5$), 3.43 (2 H, d, $J =$ 1.5), 1.31 (3 H, t, $J = 7$); ¹³C NMR 167.84, 165.95, 133.47, 119.80, 129.26, 128.53, 63.89, 62.82, 64.00, 55.40, 54.44, 50.83, 50.59, 14.07. Anal. Calcd for C₁₇H₁₈O₈: C, 58.28; H, 5.18. Found: C, 58.49; H, 5.31.

Methyl 4-hydroxy-2(S), $2(R)$ -epoxybutyrate (16) was prepared from 11 (10 g in 1:4 tetrahydrofuran-methanol, 150 mL, -10 to -25 °C), using sodium methoxide in methanol (8.0 mL, 25% wt, Aldrich), affording 16 (4.88g, 91%) after silica gel filtration
as above: mp 19-20 °C; R_f 0.29; $[\alpha]_{D}^{25}$ +36.9° (c 1, MeOH); IR 1748; MS 132 (M⁺); ¹H NMR (MeOH-d₄) 3.82 (1 H, dd, $J = 4$, 12), 3.76 (3 H, s), 3.62 (1 H, dd, $J = 4,12$), 3.51 (1 H, d, $J = 1$), 3.27 (1 H, m); ¹³C NMR 169.41, 60.08, 58.00, 52.59, 50.07. Anal. Calcd for $C_5H_8O_4$; C, 45.46; H, 6.10. Found: C, 45.57; H, 6.14.

Benzyl 4-hydroxy-2(S),3(R)-epoxybutyrate (17) was prepared from 31.5 g of 11 in benzyl alcohol (312 g) and THF (500 mL) as above, affording 17 (90%) after chromatography (Waters Prep 500): mp: 39-42 °C; R_f 0.42; [α]²⁵_D +22.4° (c 1.00, CHCl₃); IR 3599 (nonbonded), 1748; UV 258 (230), 208 (7900); MS 208 $(M⁺)$; ¹H NMR 7.36 (5 H, s), 3.56 (1 H, d, $J = 1$); ¹³C NMR 168.84, 135.00, 128.63; 128.48, 67.38, 60.04, 58.07, 50.16. Anal. Calcd for $C_{11}H_{12}O_4$: C, 63.45: H, 5.81. Found: C, 62.23; H, 5.73.

Allyl 4-hydroxy- $2(S)$, $3(R)$ -epoxybutyrate (18) was prepared from 11 (2.30 g) in allyl alcohol (58 g) and THF (50 mL, -25 °C) with sodium allyloxide (68.2 mL, 0.124 M), affording 18 (1.24 g, 93%) after silica gel filtration: R_f 0.38; $\left[\alpha\right]^{26}$ p +27.4° (c 1, CHCl₃);
IR 1748, 1197; ¹H NMR 5.91 and 5.32 (3 H, m), 4.68 (2 H, m), 3.98 (1 H, dd, $J = 2$, 11). 3.68 (1 H, $J = 4$, 11), 3.77 (2 H, $J = 2$), 3.42 (1 H, m); ¹³C NMR 168.5, 131.3, 119.3, 66.2, 60.1, 57.9, 50.1. Anal. Calcd for C₇H₁₀O₄: C, 53.16; H, 6.37. Found: C, 52.78; H, 6.18.

3-Methylbutyl 4-hydroxy-2(S),2(R)-epoxybutyrate (19) was prepared from 11 (20.0 g) isoamyl alcohol-THF (38:62, w/w) at -9 to -17 °C with sodium isoamylate (0.34 M, 205 mL), affording 19 (12.64 g, 92%): R_f 0.48; $[\alpha]^{\omega}$ _D = +22.4° (c 1.00, MeOH); IR, 1743; MS, 189 (M⁺ + 1); ¹H NMR (CDCl₃ + D₂O) δ 3.96 (1 H, dd, $J = 2.12$), 3.80 (1 H, dd, $J = 4$, 12); ¹³C NMR δ 169.18, 64.56, 60.22, 58.08, 50.29, 37.21, 25.08, 22.51, 22.48. Anal. Calcd for C₉H₁₆O₄: C, 57.43, H, 8.57. Found: C, 57.64, H, 8.46.

2-Methoxyethyl 4-hydroxy-2(S),3(R)-epoxybutyrate (20) was prepared from 11 (13 g) in 2-methoxyethanol (400 mL), using sodium 2-methoxyethanolate (0.65 M, 74 mL, -20 °C), affording 20 (5.89 g, 70%) after flash chromatography: R_f 0.30; $[\alpha]^{26}$ + 27.1^o (c 1.00 CHCl₃); IR 1750, 1227; MS 177 (M⁺ + 1); ¹H NMR (CDCl₃) $+$ D₂O) 3.96 (1 H, dd, $J = 4$, 12), 3.74 (1 H, dd, $J = 4$, 12), 3.40 $(3 \text{ H}, 8)$; ¹³C NMR 168.9, 70.1, 64.6, 60.1, 59.0, 58.1, 50.1. Anal. Calcd for $C_7H_{12}O_5$: C, 47.73; H, 6.87. Found: C, 47.51; H, 6.71.

Acknowledgment. We thank Prof K. B. Sharpless for helpful suggestions and comments in advance of publication of his work. We also thank co-workers mentioned in refs 1c and 2b for gainful insights and the Molecular Structure Division of Eli Lilly and Company.

Fine-Tuned Remote Control of Electrophilic Additions to Substituted Norbornenes

Odón Arjona,*^{,†} Roberto Fernández de la Pradilla,*^{,†} Joaquin Plumet,[†] and Alma Viso[†]

Departamento de Quimica Orgânica I, Facultad de Quimica, Universidad Complutense, 28040 Madrid, Spain, and Instituto de Quimica Orgánica, C.S.I.C., Juan de la Cierva 3, 28006 Madrid, Spain

Received April 2, 1991

The chemistry of bicyclo[2.2.1] heptane derivatives continues to attract considerable attention both from mechanistic¹ and synthetic standpoints.² Recent developments in the preparation of optically pure norbornenes by asymmetric Diels-Alder processes³ as well as by enzymatic protocols⁴ should render these intermediates even more ubiquitous in organic synthesis, especially if new regio- and stereocontrolled functionalizations are developed. While the outcome of the electrophilic additions of sulfur and selenium halides to ketone 1 and its cyanoacetoxy precursor 2 have been thoroughly studied. $5,6$ other simple norbornenic substrates such as compounds 3-10 (Scheme I) have not be examined. In connection with our involvement in the chemistry of bicyclic compounds, particularly oxanorbornenic derivatives⁷ we undertook the research described here in parallel to a previous report.^{7c}

Readily available norbornenic substrates $3-10^8$ (Scheme I) were selected for this study. Based upon previous knowledge on these processes, $5-7,9$ we anticipated that endo-substituted systems 3-5 and 10 would allow for complete steric control producing exclusively adducts arising from endo attack of the nucleophile on C-5 (A, Table I). Alternatively, exo-substituted substrates 6 and 7 were expected to display some regioselectivity in favor of the opposite isomers B possibly due to electronic reasons.¹⁰ Hydroxymethyl derivatives 8 and 9, on the other hand, were expected to show a small selectivity in favor of isomers A.^{7c} However, we guessed that the substitution of an oxygen bridge for a methylene could alter the selectivity of these processes, especially for exo-substituted substrates free of strong endo steric requirements, and therefore governed by a delicate interplay of steric and electronic effects. Table I gathers the results obtained in the course of this study.

[†]Universidad Complutense.

¹ Instituto de Quimica Orgânica, C.S.I.C.